Fraction, Decimal & Percentage Policy

Life in all its fullness!

- recognise, find and name a half as one of two equal parts of an object, shape or quantity
- recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.

Vocabulary	Stem Sentences
(new vocabulary for year in bold/italic)	(new stem sentence for year in bold/italic)
one half, halves, one quarter, quarters, equal, two, four, parts, equal parts, divide into 2, split, share, whole. fraction	The whole is split equally intoparts andparts are shaded.
	Half of is Quarter of is

Small step	Concrete	Pictorial	Abstract
Part-whole relationship	Use small toys Use small toys If the car is the whole, the wheel_is one part of the whole	If the herd is the whole, the black sheep are one part of the whole Whole Part If the circle is the whole, the whole, the black sheep are one part of the whole If the circle is the whole, the black sheep are one part of the whole If the circle is the whole, the black sheep are one part of the whole If the circle is the whole, the whole, the whole	

Small step	Concrete	Pictorial	Abstract
Find ½ of an object	Share objects equally between two.	Use pictures to represent the things e.g. circles to represent the apples.	
Find ½ of a shape	Fold a piece of paper into halves.	not half	
Find ½ of a quantity	Share objects into 2 equal groups. Build a tower half of the size of the first. Create a pattern with ½ of the objects one colour/shape and the rest different.	(Or use bar model with dots)	16 8 8 16 8 8
Find ¼ of a object	Share objects equally between four.	Use pictures to represent the things e.g. squares to represent toast	

Small step	Concrete	Pictorial	Abstract
Find ¼ of a shape	Fold a piece of paper into quarters.		
Find ¼ of a quantity	Share objects into 4 equal groups. Build a tower quarter of the size of the first. Create a pattern with ¼ of the objects one colour/shape and the rest different. Using part-whole model with counters	Part whole model or bar model with dots	Using part-whole model or bars $\frac{1}{4}$ of 20 20 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1

- recognise, find, name and write fractions 1/2, ¼, 1/3, ¾ of a length, shape, set of objects or quantity
- write simple fractions for example, $\frac{1}{2}$ of 6 = 3 and recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$.

Vocabulary	Stem Sentences	
(new vocabulary for year in bold/italic)	(new stem sentence for year in bold/italic)	
one half, halves, one quarter, quarters, equal, two, four, parts, equal parts, divide	The whole is split equally intoparts andparts are shaded.	
into 2, split, share, whole, fraction	Half of is	
numerator (tells you the 'number' of), denominator (nominates or names the	Quarter of is	
fraction), three quarters, equivalent, balance, multiply, divide, division,	If a quarter is then the whole is	
multiplication	The numerator is and the denominator is	
	is equivalent to	

Small step	Concrete	Pictorial	Abstract
Equal/ unequal parts	Provide children with various shapes – cut shapes into equal/ unequal shapes Folding paper: 'I have folded my whole length of paper into four equal parts.' 	'Are the parts of equal size?'	
	 'I have folded my whole length of paper into four unequal parts.' 	37cm 49cm 28cm	
Find 1/2, ¼, 1/3, ¾ of a length	not half half	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>1/2 of 6cm is 3m</u> 6÷2 = 3
Find 1/2, ¼, 1/3, ¾ of a shape	Folding shapes/ pieces of paper into equal parts. Breaking chocolate bars		

Small step	Concrete	Pictorial	A	bstract			
Find 1/2, ¼, 1/3, ¾ of a set	Using cubes or objects with part-whole or Singapore bar model	Drawing dots to calculate $\frac{3}{4}$ of 24:	24				
Find 1/2, ¼, 1/3, ¾ of a quantity				6	6	6	6
		6 6 6	3⁄4	of 24 is 18			
Equivalence of 2/4 and 1/2					1		
				$\frac{\frac{1}{2}}{\frac{1}{4}}$	$\frac{1}{4}$	$\frac{\frac{1}{2}}{\frac{1}{4}}$	<u>1</u> 4

- count up and down in tenths
- recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10
- recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators
- recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- recognise and show, using diagrams, equivalent fractions with small denominators
- add and subtract fractions with the same denominator within one whole [for example, 5/7 + 1/7 = 6/7]
- compare and order unit fractions, and fractions with the same denominators
- solve problems that involve all of the above.

Vocabulary	Stem Sentences
(new vocabulary for year in bold/italic)	(new stem sentence for year in bold/italic)
one half, halves, one quarter, quarters, equal, two, four, parts, equal parts, divide	The whole is split equally intoparts andparts are shaded.
into 2, split, share, whole, fraction	Half of is
numerator (tells you the 'number' of), denominator (nominates or names the	Quarter of is
fraction), three quarters, equivalent, balance, multiply, divide, division,	The numerator is and the denominator is
multiplication	is equivalent to
fifths, tenths, unit-fraction, non-unit fraction	If a quarter is then the whole is
	The value of the is tenths.
	If the is the whole, the is one part of the whole

Small step	Concrete	Pictorial	Abstract
Part-whole relationship		RELAND REPUBLIC OF RELAND REPUBLIC OF RELAND REPUBLIC OF RELAND REPUBLIC OF RELAND REPUBLIC OF RELAND REPUBLIC OF RELAND RELAND REPUBLIC OF RELAND REPUBLIC OF RELAND RELAND REPUBLIC OF RELAND REPUBLIC OF REPUBLIC OF REPUBLIC REPUBLIC OF REPUBLIC OF REPUBLIC REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF REPUBLIC OF	Part–whole relationship – cardinal context (time): Mon Tue Wed Thu Fri Sat Sun 'If the week is the whole, then Tuesday is part of the whole.'

Small step	Concrete	Pictorial	Abstract
Equal/ unequal parts	Provide children with various shapes – cut shapes into equal/ unequal shapes Folding paper: 	'Are the parts of equal size?'	
		37 cm 49 cm 28 cm	
Unit fractions: identifying, representing and comparing	Folding shapes – cutting out a piece	Shapes:	
	Using Cuisinere rods	Cardinal:	

Small step	Concrete	Pictorial	Abstract
	Set of object/ Flip counters		
Non-unit fractions	Folding shapes – cut out parts Using cuisinere rods Set of objects/ Flip counters		
Tenths – understand and count	1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		0 10 10 10 10 10 10 10 10 10 10 10 10 10	

Small step	Concrete	Pictorial	Abstract
Adding within one whole	Using cuisinere rods $1 = \frac{1}{2} $	$ \begin{array}{c} & 1 \\ $	$\frac{3}{9} + \frac{4}{9} = \frac{7}{9}$
Subtracting within one whole	Using cuisinere rods Using cuisinere rods Using cuisinere rods 3/4 - 1/4 = 2/4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{8}{9}-\frac{3}{9}=\frac{5}{9}$

- recognise and show, using diagrams, families of common equivalent fractions
- count up and down in hundredths
- recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.
- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
- add and subtract fractions with the same denominator
- recognise and write decimal equivalents of any number of tenths or hundredths
- recognise and write decimal equivalents to 41, 21, 43
- find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths
- round decimals with one decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to two decimal places
- solve simple measure and money problems involving fractions and decimals to two decimal places.

Vocabulary	Stem Sentences
(new vocabulary for year in bold/italic)	(new stem sentence for year in bold/italic)
one half, halves, one quarter, quarters, equal, two, four, parts, equal parts, divide	The whole is split equally intoparts andparts are shaded.
into 2, split, share, whole, fraction	Half of is
numerator (tells you the 'number' of), denominator (nominates or names the	Quarter of is
fraction), three quarters, equivalent, balance, multiply, divide, division,	The numerator is and the denominator is
multiplication	is equivalent to
fifths, tenths, unit-fraction, non-unit fraction	If a quarter is then the whole is
hundredths, decimal, 'three point six', 'three point seven five)	If the is the whole, the is one part of the whole
	The value of the is tenths/hundredths.

GREY – NCETM ADDITIONAL STEPS

Small step	Concrete	Pictorial	Abstract
Improper / mixed fractions	'How many oranges do Jonny and Ellen have altogether?'	$2 \qquad \begin{array}{c} 2 \\ 1 \\ 2 \end{array} \qquad \begin{array}{c} 2 \\ 2 \end{array} \qquad \begin{array}{c} 1 \\ 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \\ 2 \end{array} \qquad \begin{array}{c} 2 \\ 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \\ 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \\ 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \qquad \begin{array}{c} 2 \end{array} \qquad \begin{array}{c} 2 \end{array} \end{array} \end{array} \qquad$	
Add fractions with same denominator		$ \frac{\frac{7}{5} + \frac{3}{5} = \frac{10}{5} = 2 $ $ \frac{\frac{7}{5}}{\frac{1}{5} + \frac{1}{5} + 1$	$3\frac{2}{5}$
Subtract fractions with same denominator		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \\ \end{array} \\ \hline \\ \end{array} \\ \\ \end{array} \\ \hline \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	

Small step	Concrete	Pictorial	Abstract
Multiplying whole numbers and fractions	$ \begin{array}{c} \frac{1}{8} \\ \frac{1}{8} \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4 \times \frac{1}{8}$ $\frac{1}{8} \times 4$ $\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = 4 \times \frac{1}{8} = \frac{1}{8} \times 4$
Calculate fractions of a quantity		$\frac{1}{7} \text{ of } 56 = 56 \div $ $\frac{1}{7} \text{ of } 56 = 56 \div $ $\frac{2}{7} \text{ of } 56 \qquad \frac{3}{7} \text{ of } 56 \qquad \frac{4}{7} \text{ of } 56 \qquad \frac{4}{7} \text{ of } 28 \qquad \frac{7}{7} \text{ of } 28$	
decimal equivalents of any number of tenths or hundredths	Using place value counters Ones Tenths Hundredths 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Part-whole model 0.34 0.2 0.14 Place Value Grid with circles Ones Tenths Hundredths Ones Tenths Hundredths Ones Tenths Hundredths	$\begin{array}{c cccc} T & O \bullet t & h \\ \hline 2 & I \bullet O & 9 \\ \hline 0.34 = 0.2 + 0.14 \end{array}$
recognise and write decimal equivalents to ¼, ½. ¾		Numberline 0 0.25 0.5 0.75 1 + + + + + + + + + + + + + + + + + + +	
Divide by 10 or 100	Place Value Slider or use Place Value Grid with post-its	Place Value GridTOthTOthI5I7I 0 I7	15 ÷ 10 = 1.5 17 ÷ 100 = 0.17

- compare and order fractions whose denominators are all multiples of the same number
- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, 2/5 + 4/5 = 6/5 = 1 1/5]
- add and subtract fractions with the same denominator and denominators that are multiples of the same number
- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- read and write decimal numbers as fractions [for example, 0.71 = 71/100]
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- round decimals with two decimal places to the nearest whole number and to one decimal place
- read, write, order and compare numbers with up to three decimal places
- solve problems involving number up to three decimal places
- recognise the per cent symbol (%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal
- solve problems which require knowing percentage and decimal equivalents of 1/2, 1/4, 1/5, 2/5, 4/5 and those fractions with a denominator of a multiple of 10 or 25

Vocabulary	Stem Sentences		
(new vocabulary for year in bold/italic)	(new stem sentence for year in bold/italic)		
one half, halves, one quarter, quarters, equal, two, four, parts, equal parts, divide	The whole is split equally intoparts andparts are shaded.		
into 2, split, share, whole, fraction	Half of is		
numerator (tells you the 'number' of), denominator (nominates or names the	Quarter of is		
fraction), three quarters, equivalent, balance, multiply, divide, division,	If a quarter is then the whole is		
multiplication	The numerator is and the denominator is		
fifths, tenths, unit-fraction, non-unit fraction	is equivalent to		
hundredths, decimal, 'three point six', 'three point seven five)	If the is the whole, the is one part of the whole		
percent, percentage, mixed number, improper	The value of the is tenths/hundredths.		

Small step	Concrete	Pictorial						Abstract
Add and		Using bar model:				×3		
subtract with			<u>1</u>	-	<u>L</u> 3		<u>1</u> 3	1 _ 3
common			3				3	$\frac{1}{5} = \frac{3}{15}$
denominators		<u>1</u> 6	<u>1</u> 6	<u>1</u> 6	<u>1</u> 6	<u>1</u> 6	<u>1</u> 6	×3
		<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u><u>1</u></u>	<u>1</u>	
		6	6	6	6	6	6	$\frac{1}{5} + \frac{1}{15} =$
								↓ IS
		Using a	numberl	ine:				×3
			$\frac{1}{7}$ $\frac{2}{7}$	$\frac{3}{7}$	4	$\frac{5}{7}$ $\frac{6}{7}$	$\frac{5}{7}$ $\frac{7}{7}$	1 _ 3
		0	7 7	7	$\frac{4}{7}$	7 7	7 7	$\frac{1}{5} = \frac{3}{15}$
		$0 \frac{1}{14}$	$\frac{2}{14}$ $\frac{3}{14}$ $\frac{4}{14}$	$\frac{5}{14}$ $\frac{6}{14}$ $\frac{1}{1}$	$\frac{7}{4} \frac{8}{14} \frac{9}{14}$	$\frac{10}{14}$ $\frac{11}{14}$ $\frac{1}{14}$	$\frac{2}{4}$ $\frac{13}{14}$ $\frac{14}{14}$	×3
		14	14 14 14	14 14 1	4 14 14 •	14 14 1	4 14 14	3 1 4
					$+\frac{3}{14}$			$\frac{3}{15} + \frac{1}{15} = \frac{4}{15}$
Multiplying	1 1 1 1			1				
whole	$\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$	1 1	. 1	1	<u>1</u> <u>1</u>	1	<u>1</u>	$4 \times \frac{1}{8}$
numbers and fractions		<u>1 1</u> 8 8	<u>1</u> 8 8	<u>1</u> 8	8 8	<u>1</u> 8	8	-
mactions				•		•	·	$\frac{1}{8} \times 4$
(see NCETM				1				8
Y4)		<u>1</u> <u>1</u>	<u>1</u>	<u>1</u>	<u>1</u> <u>1</u>	<u>1</u> 8	<u>1</u>	
		$\frac{1}{8}$ $\frac{1}{8}$	<u>1</u> 8	<u>1</u> 8	8 8	8	8	1 1 1 1 . 1 1 .
								$\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = 4 \times \frac{1}{8} = \frac{1}{8} \times 4$
		$\begin{array}{c c} \underline{1} & \underline{1} \\ 8 & 8 \end{array}$	<u>1</u> <u>1</u> 8 8	$\begin{vmatrix} \underline{1} \\ 8 \end{vmatrix} \begin{vmatrix} \underline{1} \\ 8 \end{vmatrix}$	$\begin{vmatrix} \underline{1} \\ 8 \end{vmatrix} $	$\frac{1}{3}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$	<u>1</u> 1 888	
		0 0	0 0	0 0	0	, 0 0		

Small step	Concrete	Pictorial	Abstract
percentage	$1/\frac{2}{2}$ $1/\frac{4}{4}$	Numberline	e.g.
and decimal			1/2 = 0.5 = 50%
equivalents	0.75 - 3/4	0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Percentages + + + + + + + + + + + +	<i>¼</i> = 0.25 = 25%
of 1/2 , 1/4 ,		0 100 200 30 40 50 60 70 80 90 Fractions + + + + + + + + + + + + + + + + + + +	
1/5 , 2/5 , 4/5	$0.5 + \frac{1}{2}$ $0.5 + \frac{2}{4}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>¾</i> = 0.75 = 75%
and those	$0.25 - \frac{1}{4}$	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Decimals	1/5 = 0.2 = 20%
fractions with			2/5 = 0.4 = 40% and so on
a denominator	0		2/5 = 0.4 = 40% and so on
of a multiple	5		
	$1/\frac{5}{5}$ $1/\frac{1}{10}$ $0.9\frac{9}{10}$		
of 10 or 25	$0.8 + \frac{4}{5}$ $0.8 + \frac{8}{10}$		
	$0.6 + \frac{3}{5}$ $0.6 + \frac{6}{10}$ $0.5 + \frac{5}{10}$		
	$0.4 + \frac{2}{5}$ $0.4 + \frac{4}{10}$		
	$0.3 + \frac{3}{10}$		
	$\begin{array}{c c} 0.2 + \frac{1}{5} & 0.2 + \frac{2}{10} \\ 0.1 + \frac{1}{10} \end{array}$		

- use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- compare and order fractions, including fractions > 1
- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, 41 × 21 = 81]
- divide proper fractions by whole numbers [for example, $1/3 \div 2 = 1/6$]
- associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8]
- identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10, 100 and 1000 giving answers up to three decimal places
- multiply one-digit numbers with up to two decimal places by whole numbers
- use written division methods in cases where the answer has up to two decimal places
- solve problems which require answers to be rounded to specified degrees of accuracy
- recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
- RATIO OBJECTIVE: solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison

Vocabulary	Stem Sentences		
(new vocabulary for year in bold/italic)	(new stem sentence for year in bold/italic)		
one half, halves, one quarter, quarters, equal, two, four, parts, equal parts, divide	The whole is split equally intoparts andparts are shaded.		
into 2, split, share, whole, fraction	Half of is		
numerator (tells you the 'number' of), denominator (nominates or names the	Quarter of is		
fraction), three quarters, equivalent, balance, multiply, divide, division,	If a quarter is then the whole is		
multiplication	The numerator is and the denominator is		
fifths, tenths, unit-fraction, non-unit fraction	is equivalent to		
hundredths, decimal, 'three point six', 'three point seven five)	If the is the whole, the is one part of the whole		
percent, percentage, mixed number, improper	The value of the is tenths/hundredths.		

Small step	Concrete	Pictorial	Abstract
Add / subtract with different denominators			$\frac{3}{5} - \frac{1}{6} = \frac{13}{30} \times \frac{13}{5} \times \frac{13}{5} = \frac{13}{30} \times \frac{18}{30} = \frac{5}{30} = \frac{13}{30}$
			$\begin{array}{c} 3 \\ \hline 3 \\ \hline 4 \\ \times 5 \\ \hline 15 \\ \hline 15 \\ \hline 20 \\ \hline 20 \\ \hline 20 \\ \hline 20 \\ \hline 15 \\ \hline 20 \\ \hline 20 \\ \hline 19 \\ \hline 19 \\ \hline 20 \\ \hline 19 \\ \hline 19 \\ \hline 20 \\ \hline 19 \\ \hline 19 \\ \hline 20 \\ \hline 19 \\ \hline 19 \\ \hline 20 \\ \hline 19 \\ \hline 19 \\ \hline 19 \\ \hline 19 \\ \hline 20 \\ \hline 19 \\ 1$
Multiply pairs of proper fractions		S: $1 \frac{1}{4}$ of $\frac{3}{4}$ $3 \frac{1}{16}$ $1 \frac{1}{4} \times \frac{3}{4}$	$\frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \qquad \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$ $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \qquad \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$
		3	$\frac{1}{2} \times \frac{1}{6} = \frac{1}{12} \qquad \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$ $\frac{1}{3} \times \frac{1}{5} = \frac{1}{15} \qquad \frac{1}{5} \times \frac{1}{3} = \frac{1}{15}$

Small step	Concrete	Pictorial Abstract
Divide proper fractions by whole numbers		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		OR
Multiply and	Place Value Slider or use Place Value Grid	1.578 x 100 = 157.8
divide by powers of 10	with post-its	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		4002 4002

Small step	Concrete	Pictorial	Abstract
Small step Percentages of amounts	Concrete	Pictorial Bar model 400 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 30% of 400 = 40 + 40 + 40 = 120 120 120 120 120 120	Abstract $30\% \text{ of } 400 = 120$ $10\% \text{ of } 400 = 40$ $30\% = 3 \times 40 = 120$ NCETM: • 40% of 15 • 25% of 680 100% 15 10% 680 50% 25% • 5% of 1,400 • 75% of 240 100% 1,400 100% 240
			10% 50%
			5% 25%
			75%