Stratford-sub-Castle CE (VC) Primary School

Calculation Progression

Subject Leader	Miss Hannah Crook
Head Teacher:	Mrs Justine Watkins
Review Date:	July 2024
To be read in conjunction with	Maths Vocabulary Progression Maths Knowledge and Skills Progression Maths 'How to' guide
	Maths Long Term Plan National Curriculum Unit plans \& knowledge organisers

Stratford-sub-Castle Church of England VC Primary School
 Calculation Progression

Introduction

The following calculation progression has been updated to link to the White Rose Scheme of Work that Stratford-sub-Castle Primary School has been following since September 2017. This White Rose Calculation Policy has been used as a basis for this calculation progression.

Mastery Teaching Approach

At Stratford-sub-Castle CE Primary School we use a mastery teaching approach to teaching to Mathematics which follows the 'Five Big Ideas in Teaching for Mastery'.
ncetm - https://www.ncetm.org.uk/resources/50042

Concrete Pictorial Abstract (CPA) Approach

An essential part of teaching for mastery is the CPA Approach (concrete, pictorial, abstract). The calculation progression focuses on the links between, and also the progression through, Concrete, Pictorial and Abstract. Teachers go between the three different stages to reinforce concepts.

Concrete is the 'active' stage, using concrete objects/manipulatives to solve problems. Manipulatives are chosen

for the pupils by the teacher. Manipulatives are selected upon the most appropriate for the concept. Teachers may vary which manipulatives are used for a concept.

Pictorial is the 'seeing' stage, using representations of the objects involved in maths problems. This stage encourages children to make a mental connection between the physical object and abstract levels of understanding, by drawing or looking at pictures, circles, diagrams or models which represent the objects in the problem.

Abstract is the 'symbolic' stage, where children are able to use abstract symbols to model and solve maths problems. The 'abstract' concept is introduced when children has a firm understanding of the 'concrete' and 'pictorial.

Language

The calculation progression also includes vocabulary and stem sentences pupils are expected to use. This is to help reinforce concepts being learnt to result in greater understanding.

YEAR 1 - ADDITION

	CONCRETE	PICTORIAL	ABSTRACT
Combining two parts to make a whole	Use a range of manipulatives (e.g. cubes, shells, teddy bears)	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too	$4+3=7$. Four is a part, three is a part and the whole is seven.
Counting on using number lines	Using cubes or Numicon	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$
Regrouping to make 10	Using tens frames and counters/ cubes or using Numicon $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop and understanding of equality. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

YEAR 1 - ADDITION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
part whole tens ones more than	total equal	sum add same value	counting plus	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The total of \qquad and \qquad is \qquad (The total of 6 and 4 is 10).

YEAR 2 - ADDITION

YEAR 2 - ADDITION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
part whole tens ones more than	total equal	sum add same value	counting plus	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The total of \qquad and \qquad is \qquad (The total of 6 and 4 is 10). The sum of \qquad and \qquad is \qquad (The sum of 6 and 4 is 10).

YEAR 3 - ADDITION

YEAR 3 - ADDITION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
part \quad whole tens ones more than	total equal column	sum add same value hundreds	counting plus exchange	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The total of \qquad and \qquad is \qquad (The total of 6 and 4 is 10). The sum of and is (The sum of 6 and 4 is 10).

YEAR 4 - ADDITION

YEAR 4 - ADDITION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
part whole tens ones more than thousands	total equal column	sum add same value hundreds	counting plus exchange	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The total of \qquad and \qquad is \qquad (The total of 6 and 4 is 10). The sum of \qquad and \qquad is \qquad (The sum of 6 and 4 is 10).

YEAR 5 - ADDITION

	CONCRETE	PICTORIAL	ABSTRACT
Use of place value counters to add integers			Formal method
			34281
			$+21973$
			11
			56254
Use of place values to add decimals up to 3 d.p (same number of decimal places.	Exchange counters for the next base 10 unit.	Children to represent the counters in a place value chart, circling when they make an exchange.	Formal method
			$1 \cdot 622$
	$\text { (an) } \odot$		$+4.532$
			6.154

YEAR 5 - ADDITION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
part whole tens ones more than thousands thousandth	total equal column decimal	sum add same value hundreds tenth	counting plus exchange hundredth	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The total of \qquad and \qquad is \qquad (The total of 6 and 4 is 10). The sum of \qquad and \qquad is \qquad (The sum of 6 and 4 is 10).

YEAR 6 - ADDITION

YEAR 6 - ADDITION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
part whole tens ones more than thousands thousandth	total equal column decimal	sum add same value hundreds tenth	counting plus exchange hundredth	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The total of \qquad and \qquad is \qquad (The total of 6 and 4 is 10). The sum of \qquad and \qquad is \square (The sum of 6 and 4 is 10).

YEAR 1 - SUBTRACTION

	CONCRETE	PICTORIAL	ABSTRACT
Physically taking away and removing objects from a whole.	Tens frame, Numicon, cube and other items such as bean bags could be used. $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. Using the part whole model -drawing dots	$4-3=$$\left.\right\|_{-} ^{--1}=4-3$4 3 $?$

	CONCRETE	PICTORIAL	ABSTRACT
Counting back	Using number lines or number tracks children start with 6 and count back 2 $6-2=4$	Children to represent what they see pictorially	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line.
Finding the difference.	Using cubes, Numicon or Cuisinaire rods, other objects can also be used. Calculate the difference between 8 and 5 .	Children to draw the cubes/ other concrete objects which they have used or the bar model to illustrate that they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square Children to explore why $9-6=8-5=7-4$ have the same difference.
Making 10	Using ten frames 14-5	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$

YEAR 1 - SUBTRACTION

YEAR 2 - SUBTRACTION
2-digit - 1s

YEAR 2 - SUBTRACTION

YEAR 3 - SUBTRACTION

YEAR 3 - SUBTRACTION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
take away minus fewer place value	less than decrease tens	the difference partitioning column	subtract ones exchange	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The difference between \qquad and \qquad is \qquad (The difference between 12 and 4 is 8).

YEAR 4 - SUBTRACTION

YEAR 4 - SUBTRACTION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
take away minus fewer place value thousands	less than decrease tens	the difference partitioning column	subtract ones exchange	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The difference between \qquad and \qquad is \qquad (The difference between 12 and 4 is 8).

YEAR 5 - SUBTRACTION

YEAR 5 - SUBTRACTION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
take away minus fewer place value thousands thousandth	less than decrease tens decimal	the difference partitioning column tenth	subtract Ones Exchange Hundredth	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The difference between \qquad and \qquad \qquad (The difference between 12 and 4 is 8).

YEAR 6 - SUBTRACTION

YEAR 6 - SUBTRACTION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
take away minus fewer place value thousands thousandth	less than decrease tens decimal	the difference partitioning column tenth	subtract ones exchange hundredth	The whole is \qquad so a part is \qquad and a part is \qquad (The whole is 10 so a part is 6 and a part is 4) A part is \qquad and a part is \qquad so the whole is \qquad (A part is 7 and a part is 3 so the whole is 10) The difference between \qquad and \qquad is \qquad (The difference between 12 and 4 is 8).

YEAR 1 - MULTIPLICATION

	CONCRETE	PICTORIAL	ABSTRACT
Repeated grouping/ repeated addition	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	**TEACHER MODEL** Use alongside concrete/pictorial representation $\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Numberlines to show repeated groups	Using a beadstring 3×4	Represent this pictorially alongside a number line e.g	**TEACHER MODEL** Use alongside concrete/pictorial representation Abstract number line showing three jumps of four
Doubling	Using Numicon with part-whole model	Using dots with part-whole model	Using numbers with part-whole model

YEAR 1 - MULTIPLICATION

VOCABULARY (new vocab in bold/italic)					STEM SENTENCES (new vocab in bold/italic)
repeated addition multiply times	grouping lots of	equal groups of	double	The whole is of \qquad	\qquad there are \qquad equal parts \qquad (The whole is 24 there are 4 equal parts of 6)

YEAR 2 - MULTIPLICATION

N.B. Similar strategies to Y1

	CONCRETE	PICTORIAL	ABSTRACT
Repeated grouping/ repeated addition	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	Use alongside concrete/pictorial representation $3 \times 4=12$ $4+4+4=12$
Numberlines to show repeated groups	Using a beadstring 3×4	Represent this pictorially alongside a number line e.g	Abstract number line showing three jumps of four
Doubling	Using Numicon with part-whole model	Using dots with part-whole model	Using numbers with part-whole model

| | CONCRETE | PICTORIAL | ABSTRACT |
| :--- | :---: | :--- | :--- | :--- |
| Using arrays to
 illustrate
 commutativity | Counters and other objects can also be used.
 $2 \times 5=5 \times 2$ | Children to represent the arrays pictorially. | Children to be able to use an array to write a |
| range of calculations. | | | |

YEAR 2 - MULTIPLICATION

VOCABULARY (new vocab in bold/italic)					STEM SENTENCES (new vocab in bold/italic)
repeated addition multiply times	grouping lots of	equal groups of array	double	The whole is of \qquad	\qquad there are \qquad equal parts \qquad (The whole is 24 there are 4 equal parts of 6)

YEAR 3 - MULTIPLICATION

YEAR 3 - MULTIPLICATION

	VOCABULARY (new vocab in bold/italic)			STEM SENTENCES (new vocab in bold/italic)	
repeated addition multiply times grid method	grouping lots of product	equal groups of array short multiplication	double partitioning	The whole is \qquad of \qquad The product is groups of \qquad groups of 6)	\qquad there are \qquad equal parts (The whole is 24 there are 4 equal parts of 6) \qquad there are \qquad equal \qquad (The product is 24 there are 4 equal

YEAR 4 - MULTIPLICATION

YEAR 4 - MULTIPLICATION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)
repeated addition multiply times grid method exchange	grouping lots of product	equal groups of array short multiplication	double partitioning column	The whole is \qquad there are \qquad equal parts of \qquad (The whole is 24 there are 4 equal parts of 6) The product is \qquad there are \qquad equal groups of \qquad (The product is 24 there are 4 equal groups of 6)

YEAR 5 - MULTIPLICATION

	CONCRETE PICTORIAL	ABSTRACT	
Short multiplication ThHTO x 0		Using formal method.	
		39	2
		\times	5
		141	
		696	\bigcirc
Long multiplication ThHTO x 0	When children start to multiply $3 d \times 3 d$ and $4 d \times 2 d$ etc., they should be confident with the abstract	Using formal method.	
		472	
		$\times \quad 38$	
		$3^{87 \times 76}$	
		$1^{x_{4}} 160$	
		1	
		17936	

YEAR 5 - MULTIPLICATION

	VOCABULARY (new vocab in bold/italic)		STEM SENTENCES (new vocab in bold/italic)
repeated addition multiply times grid method exchange	grouping equal groups of lots of array product short multiplication long multiplication	double partitioning column	The whole is \qquad there are \qquad equal parts of \qquad (The whole is 24 there are 4 equal parts of 6) The product is \qquad there are \qquad equal groups of \qquad (The product is 24 there are 4 equal groups of 6)

YEAR 6 - MULTIPLICATION

YEAR 6 - MULTIPLICATION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)	
repeated addition multiply times grid method exchange	grouping lots of product	equal groups of array short multiplication tiplication	double partitioning column	The whole is \qquad of \qquad The product is groups of \qquad groups of 6)	\qquad there are \qquad equal parts (The whole is 24 there are 4 equal parts of 6) \qquad there are \qquad equal \qquad (The product is 24 there are 4 equal

YEAR 1 -DIVISION

YEAR 1 - DIVISION

VOCABULARY (new vocab in bold/italic)				STEM SENTENCES (new vocab in bold/italic)	
sharing halving	divide	grouping	half	The whole is parts of \qquad of 6)	\qquad there are \qquad equal \qquad (The whole is 24 there are 4 equal parts

YEAR 2 -DIVISION

YEAR 2 - DIVISION

VOCABULARY (new vocab in bold/italic)					STEM SENTENCES (new vocab in bold/italic)
sharing halving arrays	divide repeated subtraction	grouping	half	The whole is parts of \qquad of 6)	\qquad there are \qquad equal \qquad (The whole is 24 there are 4 equal parts

YEAR 3 -DIVISION

	CONCRETE	PICTORIAL	ABSTRACT
TO $\div 0$ with remainders	Using a bead string Using lollipop sticks. $13 \div 4$ Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . \square \square \square There are 3 whole squares, with 1 left over.	Represent the bead string pictorially Represent the lollipop sticks pictorially There are 3 whole squares, with 1 left over.	Using number line $13 \div 4-3 \text { remainder } 1$ Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' Times tables Facts Repeated Subtraction
Sharing	Using place value counters $42+3=14$ 000000 -००	Children to represent the place value pictorially	Write calculation to show steps $\begin{aligned} & 42+3 \\ & 42=30+12 \\ & 30+3=10 \\ & 12+3=4 \\ & 10+4=14 \end{aligned}$

YEAR 3 - DIVISION

YEAR 4 -DIVISION

	CONCRETE	PICTORIAL	ABSTRACT
Short division	Using place value counters to group.$615 \div 5$100 s 10 s 1s $\Theta \theta$ 00000 0θ 000 00000 $0 \cdot$ 0000 00000 1 2 3 1. Make 615 with place value counters. 2. How many groups of 5 hundreds can you make with 6 hundred counters? 3. Exchange 1 hundred for 10 tens. 4. How many groups of 5 tens can you make with 11 ten counters? 5. Exchange 1 ten for 10 ones. 6. How many groups of 5 ones can you make with 15 ones?	Represent the place value counters pictorially.	Use the short division scaffold to calculate

YEAR 4 - DIVISION

VOCABULARY (new vocab in bold/italic)			STEM SENTENCES (new vocab in bold/italic)
sharing halving arrays bus shelter	divide repeated subtraction	grouping half remainders short division	The whole is \qquad there are \qquad equal parts of \qquad (The whole is 24 there are 4 equal parts of 6) The whole is \qquad there are \qquad equal parts of \qquad and \qquad remainders (The whole is 26 there are 4 equal parts of 6 and 2 remainders)

YEAR 5 -DIVISION

YEAR 5 - DIVISION

	VOCABULARY (new vocab in bold/italic)	STEM SENTENCES (new vocab in bold/italic)
sharing halving arrays bus shelter	repeated subtraction remainders short division	The whole is \qquad there are \qquad equal parts of \qquad (The whole is 24 there are 4 equal parts of 6) The whole is \qquad there are \qquad equal parts of \qquad and \qquad remainders (The whole is 26 there are 4 equal parts of 6 and 2 remainders) The quotient of \qquad and \qquad is \qquad (The quotient of 24 and 6 is 4)

YEAR 6 -DIVISION

| Short division
 Interpret
 remainders as
 whole
 numbers,
 fractions or
 decimals | | PICTORIAL | ABSTRACT |
| :--- | :---: | :---: | :---: | :---: |

YEAR 6 - DIVISION

	VOCABULARY (new vocab in bold/italic)	STEM SENTENCES (new vocab in bold/italic)
sharing halving arrays bus shelter	dividerepeated subtraction long divsion	The whole is \qquad there are \qquad equal parts of \qquad (The whole is 24 there are 4 equal parts of 6) The whole is \qquad there are \qquad equal parts of \qquad and \qquad remainders (The whole is 26 there are 4 equal parts of 6 and 2 remainders) The quotient of \qquad and \qquad is \qquad (The quotient of 24 and 6 is 4)

